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Abstract. We study a system with two types of interacting particles on a one-
dimensional lattice. Particles of the first type, which we call “active”, are able to detect
particles of the second type (called “passive”). By relating the problem to a discrete
random walk in one dimension with a fixed number of steps we determine the fraction
of active and detected particles for both open and periodic boundary conditions as
well as for the case where passive particles interact with both or only one neighbors.
In the random walk picture, where the two particles types stand for steps in opposite
directions, passive particles are detected whenever the resulting path has a corner.
For open boundary conditions, it turns out that a simple mean field approximation
reproduces the exact result if the particles interact with one neighbor only.

A practical application of this problem is heterogeneous traffic flow with
communicating and non-communicating vehicles. In this context communicating vehicles
can be thought of as active particles which can by front (and rear) sensors detect the
vehicle ahead (and behind) although these vehicles do not actively share information.

Therefore, we also present simulation results which show the validity of our analysis
for real traffic flow.
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1. Introduction

A combinatorial problem of heterogeneous traffic flow with communicating and non-
communicating vehicles originally motivated our analysis: Information exchange between
vehicles is expected to enhance traffic safety and traffic stability notably [1, 2, 3, 4, 5, 6].
The envisioned technology for this purpose is wireless communication networks, so-called
vehicular ad hoc networks (VANETs). After market introduction, however, only a small
fraction of vehicles will be equipped with the necessary communication devices. On
the other hand, local sensors (e.g., radar or lidar) enable vehicles to gather information
about the preceding and succeeding vehicle. Consequently, a communicating vehicle
may not only broadcast information about itself but also information about the vehicle
driving behind or ahead. Hence, the number of vehicles whose position is known may be
significantly higher than the actual number of communicating vehicles.

Not only for traffic related applications it is an interesting question how many
vehicles are on average known (i.e., either actively communicating or being detected by
a neighboring vehicle) for a given share of communicating vehicles on the road.

To answer this question we study a one-dimensional particle chain with two types
of particles to which we will either refer as “active” or “passive”. The traffic flow example
in mind also explains our choice to speak of active and passive particles. When studying
exclusion processes [7], one would rather speak of occupied and empty sites and in the
context of zero range processes (e.g., [8]) of sites and particles, respectively.

For random configurations of active and passive particles we determine the average
number of passive particles neighboring an active one by mapping the system to a one-
dimensional (1d) discrete random walk. This mapping even allows for an interpretation
which is closer to physics: If one thinks of the different particle types as changes in the
height profile of a 1d surface by ±1, then the fraction of passive particles next to an active
one corresponds to the surface’s extremal-point density. In general, such extremal-point
densities allow to study the dynamics of nonequilibrium surface fluctuations and have
applications to an even broader range of research. For a detailed discussion of the
dynamics of rough surfaces, the density of local extrema and analytic solutions we refer
to the very comprehensive article [9] by Toroczkai et al.

The remainder of the paper is organized as follows: After introducing the problem
in the next section we will then derive analytic formulas to determine the fraction of
known particles depending on the number of active particles for both open and periodic
boundary conditions. We will also examine the case where a passive particle becomes
known only if its right (left) neighbor is active. In the picture of vehicular traffic this
corresponds to the case where communicating vehicles are equipped with front (rear)
sensors only. It turns out that in this case the mean field approximation reproduces
the exact result. Finally, we compare the analytic results with traffic flow simulations.
We find that on a macroscopic level the theoretical findings are in excellent agreement
with the simulation results. From a single vehicle’s perspective, though, the limited
communication range and interference effects decrease the fraction of known vehicles
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compared to the theoretical prediction.

2. Model description

To analyze the problem presented in the introduction we start with a one-dimensional
lattice with N sites. Each lattice site contains either an active or a passive particle
(represented by • or ◦). Let the number of active (passive) particles be A (P ) and
N = P + A. Then it follows directly the probability of a randomly selected site to
contain an active (passive) particle is p = A/N (1− p = P/N).

Active particles are always assumed to be known. For a passive particle to be known
it has to neighbor an active one. Here we distinguish two cases:

(i) Symmetric case: A passive particle is called known if at least one of its two
neighbors is active.

(ii) Asymmetric case: A passive particle is called known only if its left (right) neighbor
is active.

The knowledge about the systems obviously depends on the average number of passive
particles which are known in a given configuration. Fig. 1(a) depicts a sample
configuration with N/2 = A = P = 6. In this configuration all but one (three)
particle(s) are known in the symmetric (asymmetric) case independent of the boundary
condition.

In general, the number of known particles depends on the distribution and amount
of active particles. For instance, to have full knowledge of the system (i.e., for all particles
to be known) the minimum share of active particles is p = 1/3 in the symmetric case
(◦•◦◦•◦) and p = 1/2 in the asymmetric case (•◦•◦).

(a) Particle chain (b) Corresponding random walk

Figure 1. The presented model consists of a chain with two types of particles: active
ones and passive ones. 1(a) Active (passive) particles are represented by •(◦). The
number of known particles consists of all active particles and all passive particles next
to an active one. In the sample configuration of 1(a) there are 11 particles out of 12
known in the symmetric case and 9 out of 12 in the asymmetric case. The model can
also be viewed as a 1D random walk where the different types of particles correspond to
steps in opposite directions. In this picture passive particles become known whenever
the direction of the walk is reversed. Hence, the fraction of known passive particles is
also related to the density of extremal points of the corresponding random walk.

At first sight, the usage of only two particle types, representing communicating and
non-communicating vehicles, appears as a rough approximation of real traffic flow as
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we ignore the inter-vehicle distance. We admit the introduction of additional empty
lattice sites would better reflect the actual situation on a real road or in traffic cellular
automata (e.g., [10]) as considered in section 4. But the approximation is justified
since the detection range of vehicle sensors of about 200 meters is larger than the
typical space gap between two vehicles. Besides, the case where the inter-vehicle spacing
exceeds the sensors’ range is negligible because in this case the contribution of vehicular
communication to traffic safety and efficiency will be marginal at best.

3. Determining the fraction of known particles

In this section we determine the fraction of known particles ko,pa,s as a function of the
total particle number N and the number of active particles A. The upper index in ko,pa,s

specifies whether we consider open (o) or periodic (p) boundaries. The lower index
denotes the symmetric (s) or asymmetric (a) case.

As a passive particle becomes known when it is next to an active one, one has to
count all •◦ (and ◦•) sequences among all

(
N
A

)
possible configurations in the asymmetric

(symmetric) case. We will start to derive an analytic solution for the symmetric case for
periodic and open boundary conditions. The extension to the asymmetric case is straight
forward. For the latter case it actually turns out that a simple mean field approximation
is exact. The mean field approximation can be represented by a single-valued function
ka,s(p) with p = A/N .

3.1. Analytic solution for the symmetric case

It is helpful to interpret the occupied lattice as a one-dimensional random walk where
each active particle corresponds to a step to the left and each passive particle to a step
to the right or vice versa. Fig. 1(b) illustrates this analogy. In this picture passive
particles are discovered whenever the direction of the walk is reversed (i.e., when a corner
occurs). Care must be taken, however, when a passive particle neighbors two active
particles (•◦•): In this case only one of the two corresponding corners stands for a newly
discovered particle.

Hence, the kos (N,A) can be calculated by determining the number of paths with R
corners and weighing it by a factor proportional to R. Thereby, our model is similar to
a problem by Feynman and Hibbs [11]: To calculate the kernel of a relativistic particle
moving in 1 + 1 dimension Feynman suggested summing over all possible paths with
A (P ) steps to the left (right) and weighing each path with a factor depending on the
number of corners.

To count the configurations which have exactly R corners we have to distinguish
four cases:

(i) The first particle is active and the last one is passive (•. . . ◦).

(ii) The first particle is passive and the last one is active (◦. . . •).

(iii) Both the first particle and last particle are active (•. . . •).
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(iv) Neither the first particle nor the last particle are active (◦. . . ◦).

In analogy to Jacobson and Schulman who presented a solution [12] to Feynman’s problem
we introduce the function Φxy(R). The function returns the number of configurations
with R corners if the first particle is of type x and the last one is of type y. For x = •
and y = ◦ one obtains [12]:

Φ•◦(R) =

(
A− 1

1
2
(R− 1)

)(
P − 1

1
2
(R− 1)

)
(1)

with odd R and 0 ≤ R − 1 ≤ 2 min(A− 1, P − 1). Due to the problem’s symmetry it
immediately follows Φ•◦(R) = Φ◦•(R).

For Φ◦◦(R) we obtain:

Φ◦◦(R) =

(
P − 1
1
2
R− 1

)(
A− 1

1
2
R

)
(2)

for even R and 2 ≤ R ≤ min(2A− 2, 2P ) from which follows

Φ••(R) =

(
A− 1
1
2
R− 1

)(
P − 1

1
2
R

)
(3)

with R even and 2 ≤ R ≤ min(2P − 2, 2A).
To count passive particles in a •◦• configuration only once, one of the corresponding

corners must be skipped. With periodic boundaries the probability p•◦•(N,A) for such a
configuration to occur on a lattice with N sites and A active particles is (see, e.g., [13])

p•◦•(N,A) =
A− 1

N − 2
. (4)

For convenience, we introduce

n = N

(
N

A

)
.

Then it directly follows that the average fraction of known particles kos as a function
of N and A is:

kos (N,A) =
1

n

∑
R

∑
x,y∈{◦,•}

Φxy(R)

(
R + A− R

2
p•◦•(N + 1, A)

)
(5)

where we assumed the Φxy(R) to return zero if R is not in the set of valid values
as specified in equations (1)–(3). The 1/n-term normalizes the probability such that
k(N,N) = 1. The +1-term in the first argument of p•◦•(·, ·) is a consequence of the open
boundary conditions: As with open boundaries the leftmost and rightmost particles have
only one neighbor site, the probability for a •◦• sequence to occur is identical to the
one on a periodic lattice with N + 1 sites where the additional site is occupied by a
passive particle. By using the normalization

∑
R

∑
x,y∈{•,◦} Φx,y(R) =

(
N
A

)
we can rewrite

equation (5) as

kos (N,A) =
A

N
+

(
1

n
− 1

2n

A− 1

N − 1

)∑
R

∑
x,y∈{◦,•}

R× Φxy(R). (6)
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The sums in equation (6) can be converted to hypergeometric functions [14] and
turn out to be particular cases of Gauss’s hypergeometric theorem. Thereby, the previous
formula can be reduced to a simple rational function depending only on the total number
of particles and the number of active particles:

kos (N,A) =
A(A2 + A− 3NA+ 3N2 − 2N)

N2(N − 1)
. (7)

The extension to periodic boundaries is straight forward. When closing the chain to
form a ring, one additional corner originates for all Φ•◦(R) and Φ•◦(R) configurations.
In this case one has to replace R→ R + 1 for the weighing factor in round brackets in
equation (5) and •◦• sequences need no special treatment which leads to

kps (N,A) =
A(A2 + 3A− 3AN + 3N2 + 2− 6N)

N(N − 1)(N − 2)
. (8)

Finally, let us compare the error of a simple mean field approximation with the exact
result. One obtains the mean field approximation by noting that the only configuration
in which a passive particle remains unknown is when both its neighbors are passive
particles as well. The probability for this configuration is (1 − p)3. In all other cases
(1− (1− p)3) a passive particle is known which yields

ks(p) = ks (A/N) = p3 + 3p(1− p) (9)

The larger is the system (i.e., the number of lattice sites N) the better is the agreement
between equation (7)/(8) and (9) as in the thermodynamic limit N →∞ and p = const.
(i.e., N ≈ (N − 1) and Ai/N j → 0 for 0 < i < j and A < N), the mean field
approximation converges to k(N,A) as k(N,A) = k(p) +O(N−1).

3.2. Analytic solution for the asymmetric case

In the asymmetric case a passive particles becomes known only if its left neighbor is
active. (We restrict the discussion to this case, although the results are also valid if a
passive particle requires an active particle to its right in order to be known.)

With similar reasoning as in the previous section one can derive the fraction of known
particles as a function of lattice size N and the number of active particles A. In general,
every second corner in the corresponding random walk stands for a known passive particle.
Care must be taken for the Φxy(R) configurations with x 6= y: These configurations have
an odd number of corners. Moreover, there is at least one known passive particle for each
Φ•◦(R) configuration which is not guaranteed for Φ•◦(R) configurations. This leads to

koa(N,A) =
1

n

∑
R

[
(Φ••(R) + Φ◦◦(R))

(
R

2
+ A

)
+Φ•◦(R)

(
R + 1

2
+ A

)
+Φ•◦(R)

(
R− 1

2
+ A

)]
. (10)
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Evaluating the sums gives

koa(N,A) = koa(p) = p(2− p) (11)

for open boundaries. This is exactly the same result a mean field approximation yields
as one can easily verify: In the asymmetric case the only configuration in which a passive
particle remains unknown is if the particle to its left is passive (◦◦). The probability for
this sequence is (1− p)2 and, consequently, k(p) = 1− (1− p)2 = p(2− p).

A similar calculation for periodic boundary conditions yields:

kpa (N,A) =
A(2N − A− 1)

N(N − 1)
. (12)

3.3. The asymmetric case and the density of local maxima

We would like to discuss briefly the relation between the fraction of known passive particles
and the density of local maxima in the random walker’s path, which we have already
mentioned in the introductory section. This relation becomes obvious by comparing
figs. 1(a) and 1(b): Each •◦ configuration in fig. 1(a) results in a local maximum in fig.
1(b). Hence, we obtain the average density of local maxima ρomax by setting A = 0 on
the rhs of (10):

ρomax(N,A) =
A(N − A)

N2
= p(1− p). (13)

As we average over all configurations, the density of local maxima and minima is identical
(ρomax = ρomin). An analogous calculation for periodic boundary conditions yields

ρpmax(N,A) = ρpmin(N,A) =
A(N − A)

N(N − 1)
. (14)

(Note that the interpretation of periodic boundary conditions for the random walker’s
path is somewhat difficult as the two ends of the 1d surface have different heights if
A 6= P .)

4. Simulations for vehicular networks

Finally, we validate the theoretical predictions with simulations of a vehicular
communication network on a circular one-lane road of radius 1.5 km. Each communicating
vehicle is assumed to send periodic status messages with a frequency of 4 Hz (The full
set of parameters can be found in [15]). These messages comprise the vehicle’s position
and velocity as well as the position and the velocity of the preceding (and following)
vehicle(s) in the asymmetric (symmetric) case. For realistic communication modeling
we used a probabilistic propagation model [16]. Vehicle motion is simulated using a
traffic cellular automaton [17] . The road was initialized with densities ranging from
5 percent up to 65 percent. Higher densities were omitted because at a density of 65
percent the average bumper to bumper distance already is below 4.1 meters and a large
traffic jam spans the entire road. Thus, from a practical point of view it is not necessary



Counting the corners of a random walk and its application to traffic flow 8

to know the position and velocity of each vehicle to estimate the traffic dynamics at
such high vehicle densities. For our analysis we initialized the road homogeneously and
recorded the communication statistics of a 60 second interval after a relaxation time of
240 seconds. For each density we averaged over at least five independent runs.

To assess the validity of the theoretical calculations for real world applications we
compare the simulations results to the corresponding mean field approximation. Here
we distinguish between global and local knowledge. Global knowledge is the aggregated
information from all communicating vehicles at a given time. A central node or sever to
which all vehicles send the available information might possess such global knowledge.
Analogously, we refer to the knowledge of a single vehicle as local knowledge.
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Figure 2. We compare the theoretical prediction of k(p) to simulations of a vehicular
communication network. Assuming all communicating vehicles successfully transmit
their knowledge to a central node the information of the latter depending on the
fraction of communicating vehicles is very well described by functions k(N,A) derived
in section 3 (fig. 2(a)): The curve for the (a)symmetric case is depicted by a (dashed)
solid line. Simulation results were averaged over various vehicle densities in the range
5% ≤ ρ ≤ 65% for rates of communicating vehicles sampled over 5% intervals. The
average fraction of known vehicles for a single vehicle is given in fig. 2(b)-2(d) for
different sizes of the neighborhood.

In fig. 2(a) the percentage of known vehicles of is shown for the entire system. The
functional relations (9) and (11) serve as reference. The good agreement is not surprising
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as we assumed each vehicle is able to successfully transmit its knowledge to the central
node.

A realistic treatment of communication between particles, however, is likely to
deteriorate these results for two reasons. The communication range is limited and in the
case of simultaneous transmissions closer senders are preferred due to a stronger signal
strength at the receiver. Hence, the fraction of known particles will decrease the larger
is the distance two vehicles. Figs. 2(b) and 2(c) show a comparison between the average
knowledge of single vehicles and the predictions by equations (9) and (11), and illustrate
this effect. We divided neighboring vehicles in different categories containing all vehicles
closer than 100, 200, ..., 500 and 1000 meters, respectively. For each range we determine
the average knowledge a communicating vehicle has in the symmetric (fig. 2(b)) as well
as in the asymmetric case (fig. 2(c)). Even if all vehicles are communicating, the fraction
of known vehicles stays below 93 percent. For low rates of communicating vehicles the
number of known vehicles is above the analytic prediction, though. To explain this
behavior see fig. 2(d) where we averaged only over a fixed vehicle density of ρ = 9%

(symmetric case). At low densities there are only few vehicles within the neighborhood of
communicating vehicles among which at least the ones immediately in front and behind
are detected. This explains why these configurations show a relatively large fraction of
known vehicles and, thereby, increase the fraction of known vehicles when averaging over
all densities as in fig. 2(b).

5. Discussion

In this paper we developed a model of a one-dimensional system with two types of particles,
namely active and passive particles. By mapping the model to a one-dimensional random
walk we could derive formulas to determine fraction of known particles within the system
depending on the system size N and the number of active particles A. As expected,
the functions are strictly increasing for A → N . For low fractions p = A/N of active
particles the dominating term in equations (7) and (8) is 3A/N for the symmetric case.
This in turn means each active particles discovers approximately two passive particles.
For p = 0.1 and N →∞ the number of discovered passive particles per active is slightly
above 1.7 as can be obtained from equation (9). Similarly, with an asymmetry in particle
discovery the term 2A/N contributes most to the sums in equations (11) and (12) for
A� N . In the latter case we could also show that a simple mean field approximation is
exact for open boundaries. In all cases mean field approximations are in good agreement
with the exact result for large N (N > 100) as the error decreases linearly with N−1.
Furthermore, in systems with open boundaries knowledge is lower than in systems with
periodic boundaries as the active particles occupying the boundaries have only one
neighbor to discover instead of two.

Comparing the analytic results to simulations of a vehicular communication network
which motivated our analysis showed that realistic communication modeling decreases the
fraction of known vehicles. The analytic solution then can serve as an upper boundary
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in most situations.

Acknowledgments

We thank A Schadschneider for discussing selected aspects of the problem with us. We
also thank the anonymous reviewer who pointed us to the relation between the problem
considered here and the density of local extrema of a 1d surface (cf. [9]). The work of
FK was funded by the state of North Rhine-Westphalia and the European Union within
the NRW-EU Ziel 2 program.

References

[1] Car 2 car communication consortium. http://www.car-to-car.org/.
[2] Kerner B S, Klenov S L, and Brakemeier A. In IEEE Intell. Vehicles Symp., pages 180 – 185, 2008.
[3] Kerner B S. Introduction to Modern Traffic Flow Theory and Control: The Long Road to Three-

Phase Traffic Theory, pages 162–168. Springer, Berlin, 2009.
[4] Kerner B S, Klenov S L, and Brakemeier A. Traf. Eng. & Cont., 51(6):217–222, 2010.
[5] Lee H K and Kim B J. Physica A, 390(23–24):4555 – 4561, 2011.
[6] Knorr F and Schreckenberg M. Physica A, 391(6):2225 – 2231, 2012.
[7] Derrida B and Evans M R. Nonequilibrium Statistical Mechanics in One Dimension, chapter 14,

pages 277–304. Camebridge University Press, Camebridge, 1997.
[8] Evans M R. Phase transitions in one-dimensional nonequilibrium systems. Braz. J. Phys., 30(1):42–

57, 2000.
[9] Toroczkai Z, Korniss G, Das Sarma S, and Zia R K P. Phys. Rev. E, 62:276–294, 2000.
[10] Nagel K and Schreckenberg M. J. Phys. France I, 2(12):2221–2229, 1992.
[11] Feynman R P and Hibbs A R. Quantum Mechanics and Path Integrals, pages 34–36. McGraw-Hill,

New York, 1965.
[12] Jacobson T and Schulman L S. J. Phys. A, 17:375–383, 1984.
[13] Pulkkinen O and Merikoski J. Phys. Rev. E, 64:056114, Oct 2001.
[14] Koepf W. Hypergeometric summation. Vieweg, Wiesbaden, 1998.
[15] Knorr F, Baselt D, Schreckenberg M, and Mauve M. submitted to IEEE Trans. Veh. Technol.,

2012.
[16] Nakagami M. The m-distribution - a general formual of intensitivity distribution of rapid fading.

In W. G. Hoffman, editor, Statistical Methods in Radio Wave Propagation, pages 3–36. Pergamon,
Oxford, UK, 1960.

[17] Knospe W, Santen L, Schadschneider A, and Schreckenberg M. J. Phys. A, 35(15):3369–3388,
2002.


